decline_fit.Rd
Generate a list of estimates for the Arps decline model according to the class of 'decline_fit_lst' and 'time_lst' objects
decline_fit(decline_fit_lst, time_lst)
decline_fit_lst | a list object of class 'decline_fit' |
---|---|
time_lst | a list object of class 'time' |
a list of estimates for the parameters of the Arps model according to the class of 'decline_fit_lst' and 'time_lst' objects
dcl_time_hyp <- decline_time(1:10000, unit = "day") prod_data <- 4500 / (1 + 0.002 * 0.834 * dcl_time_hyp$t) ^ (1 / 0.834) dcl_fit_param_hyp <- decline_fit_param(input_unit = "Field", output_unit = "Field", fluid = "gas", model = "hyperbolic", fit_data = "rate", prod_data = prod_data, initial_param = c(1000, 0.01, 1.0), lower = c(0, 1e-6, 1e-6), upper = NULL, control = list(maxiter = 100)) dcl_fit_hyp <- decline_fit(dcl_fit_param_hyp, dcl_time_hyp) dcl_fit_hyp#> $input_unit #> [1] "Field" #> #> $output_unit #> [1] "Field" #> #> $fluid #> [1] "gas" #> #> $qi #> [1] 4500 #> #> $Di #> [1] 0.002 #> #> $b #> [1] 0.834 #> #> attr(,"nls.out") #> Nonlinear regression via the Levenberg-Marquardt algorithm #> parameter estimates: 4499.99996179776, 0.00199999997462462, 0.834000032753601 #> residual sum-of-squares: 2.352e-15 #> reason terminated: Relative error between `par' and the solution is at most `ptol'. #> attr(,"class") #> [1] "hyperbolic" "decline"