The pvt_gas() generates a table of gas PVT properties at reservoir temperature and pressures from the atmospheric condition up to the initial reservoir pressure. The estimated properties are compressibility factor, formation volume factor, density, compressibility, viscosity, and pseudo-pressure.

pvt_gas(
  input_unit = "Field",
  output_unit = "Field",
  fluid = "wet_gas",
  pvt_model = "DAK",
  visc_model = "Sutton",
  t = 300,
  p = 5000,
  gas_spgr = 0.69,
  nhc_composition = c(0, 0, 0),
  cgr = 3,
  cond_api = 42,
  warning = "yes"
)

Arguments

input_unit

input unit system for parameters, a character string either 'SI' or 'Field'

output_unit

output unit system for properties, a character string either 'SI' or 'Field'

fluid

fluid type, a character string either 'dry_gas' or 'wet_gas'

pvt_model

PVT model, the character string 'DAK'

visc_model

viscosity model, the character string 'Sutton'

t

temperature, a numeric value either in 'C' or 'F' depending on the 'input_unit'

p

pressure, a numeric value either in 'kPag' or 'Psig' depending on the 'input_unit'

gas_spgr

gas specific gravity (Air = 1.0)

nhc_composition

a vector of mole fractions for nitrogen, hydrogen sulfide, and carbon dioxide, respectively

cgr

condensate to gas ratio, a numeric value in 'm3/m3' or 'STB/MMSCF' depending on the 'input_unit'

cond_api

condensate API

warning

a charater string either 'yes' or 'no'

References

Sutton RP (2007). “Fundamental PVT Calculations for Associated and Gas/Condensate Natural-Gas Systems.” SPE Reservoir Evaluation \& Engineering, 10(03), 270--284. ISSN 1094-6470, doi: 10.2118/97099-PA , https://doi.org/10.2118/97099-PA.

Wichert E, Aziz K (1972). “Calculation of Z's for Sour Gases.” Hydrocarbon Processing, 51(5), 119--122.

Examples

pvt_gas_results_1 <- pvt_gas(input_unit = "Field", output_unit = "Field", fluid = "dry_gas", pvt_model = "DAK", visc_model = "Sutton", t = 400, p = 20000, gas_spgr = 0.65, nhc_composition = c(0.05,0.02,0.04), cgr = 0.0, cond_api = NULL, warning = "yes")
#> Warning: pressure is greater than dry gas PVT correlation upper limit: 10000 psig
#> Warning: H2S composition is greater than gas viscosity correlation upper limit: 0.017 mol fraction
head(pvt_gas_results_1)
#> T_(F) P_(Psig) Z-Factor Bg_(rb/scf) Density_(lb/cuft) Cg_(1/Psia) #> [1,] 400 0 0.9996604 0.29451463 0.03000010 0.06806872 #> [2,] 400 10 0.9994315 0.17521848 0.05042543 0.04051521 #> [3,] 400 20 0.9992042 0.12468905 0.07086001 0.02884443 #> [4,] 400 30 0.9989785 0.09677006 0.09130374 0.02239587 #> [5,] 400 40 0.9987546 0.07905999 0.11175651 0.01830521 #> [6,] 400 50 0.9985324 0.06682489 0.13221823 0.01547908 #> Viscosity_(cp) m(p)_(Psia^2/cp) #> [1,] 0.01710161 0.00 #> [2,] 0.01710206 23044.84 #> [3,] 0.01710264 57796.51 #> [4,] 0.01710334 104259.22 #> [5,] 0.01710415 162436.93 #> [6,] 0.01710506 232333.32
pvt_gas_results_2 <- pvt_gas(input_unit = "Field", output_unit = "Field", fluid = "wet_gas", pvt_model = "DAK", visc_model = "Sutton", t = 300, p = 20000, gas_spgr = 0.75, nhc_composition = c(0.02,0.05,0.08), cgr = 10.0, cond_api = 42.4, warning = "yes")
#> Warning: pressure is greater than wet gas PVT correlation upper limit: 17000 psig
#> Warning: H2S composition is greater than gas viscosity correlation upper limit: 0.017 mol fraction
head(pvt_gas_results_2)
#> T_(F) P_(Psig) Z-Factor Bg_(rb/scf) Density_(lb/cuft) Cg_(1/Psia) #> [1,] 300 0 0.9991665 0.26012701 0.04087353 0.06810236 #> [2,] 300 10 0.9986016 0.15470785 0.06872508 0.04054888 #> [3,] 300 20 0.9980384 0.11005621 0.09660800 0.02887811 #> [4,] 300 30 0.9974769 0.08538487 0.12452218 0.02242956 #> [5,] 300 40 0.9969172 0.06973491 0.15246753 0.01833892 #> [6,] 300 50 0.9963594 0.05892306 0.18044394 0.01551281 #> Viscosity_(cp) m(p)_(Psia^2/cp) #> [1,] 0.01593860 0.00 #> [2,] 0.01593933 24743.52 #> [3,] 0.01594028 62067.98 #> [4,] 0.01594143 111985.57 #> [5,] 0.01594275 174507.97 #> [6,] 0.01594424 249646.48