mbal_forecast_param_oil.Rd
Create an object of class 'forecast_oil'
mbal_forecast_param_oil( input_unit = "Field", output_unit = "Field", N = NULL, m = NULL, phi = NULL, swi = NULL, Gi = NULL, pb = NULL, p = NULL, pvt = NULL, cf = NULL, wf = NULL, sorg = NULL, rel_perm = NULL )
input_unit | a unit system for parameters, only the character string 'Field' is accepted |
---|---|
output_unit | a unit system for properties, only the character string 'Field' is accepted |
N | original oil in place, STB |
m | ratio of original gas cap volume to original oil leg volume, a numeric fraction |
phi | reservoir porosity, a numeric fraction |
swi | initial water saturation in the reservoir, a numeric fraction |
Gi | cumulative gas injection, SCF |
pb | bubble point pressure, a numeric value, psi |
p | reservoir pressure, a numeric vector, psi |
pvt | a data frame of PVT properties including pressure 'p' in 'psi', oil formation volume factor 'Bo' in 'bbl/stb', solution gas-oil ratio 'Rs' in 'scf/stb', oil viscosity 'muo' in 'cp', volatilized oil-gas ratio 'Rv' in 'stb/scf', gas formation volume factor 'Bg' in 'bbl/scf', gas viscosity 'mug' in 'cp', water formation volume factor 'Bw' in 'bbl/stb', and water viscosity 'muw' in 'cp' |
cf | formation compressibility, a numeric value or vector, 1/psi |
wf | weight factor, a numeric vector of zeros and ones. A zero value excludes the entire row of reservoir history data at a particular time from the material balance analysis |
sorg | residual oil saturation in gas invaded zone (gas cap expansion or gas injection), a numeric fraction |
rel_perm | a data frame with four columns: gas saturation 'Sg', liquid saturation 'Sl', gas relative permeability 'Krg', and oil relative permeability 'Krog' |
a list of class ’forecast_oil’ with all the required parameters for the mbal_forecast_oil() S3 methods
p_pvt <- c(3330, 3150, 3000, 2850, 2700, 2550, 2400) Bo <- c(1.2511, 1.2353, 1.2222, 1.2122, 1.2022, 1.1922, 1.1822) Rs <- c(510, 477, 450, 425, 401, 375, 352) Bg <- c(0.00087, 0.00092, 0.00096, 0.00101, 0.00107, 0.00113, 0.00120) cw <- 2e-6 Bwi <- 1.0 Bw <- Bwi * exp(cw * (p_pvt[1] - p_pvt)) Rv <- rep(0, length(p_pvt)) muo <- rep(0.5, length(p_pvt)) muw <- rep(0.25, length(p_pvt)) mug <- rep(0.02, length(p_pvt)) pvt_table <- data.frame(p = p_pvt, Bo = Bo, Rs = Rs, Rv = Rv, Bg = Bg, Bw = Bw, muo = muo, mug = mug, muw = muw) rel_perm <- as.data.frame(Rrelperm::kr2p_gl(SWCON = 0.2, SOIRG = 0.10, SORG = 0.10, SGCON = 0.05, SGCRIT = 0.05, KRGCL = 0.3, KROGCG = 1, NG = 0.93, NOG = 10, NP = 101)) colnames(rel_perm) <- c("Sg", "Sl", "Krg", "Krog") p <- c(3330, 3150, 3000, 2850, 2700, 2550, 2400) Gi <- rep(0, length.out = length(p)) wf <- c(1, 1, 1, 0, 1, 0, 1) forecast_lst <- mbal_forecast_param_oil(input_unit = "Field", output_unit = "Field", N = 1.37e8, m = 0.377, phi = 0.2, swi = 0.2, Gi = Gi, pb = 3330, p = p, pvt = pvt_table, cf = 0, wf = wf, sorg = 0.2, rel_perm = rel_perm) dplyr::glimpse(forecast_lst)#> List of 14 #> $ input_unit : chr "Field" #> $ output_unit: chr "Field" #> $ N : num 1.37e+08 #> $ m : num 0.377 #> $ phi : num 0.2 #> $ swi : num 0.2 #> $ pb : num 3330 #> $ p : num [1:7] 3330 3150 3000 2850 2700 2550 2400 #> $ cf : num [1:7] 0 0 0 0 0 0 0 #> $ pvt :'data.frame': 7 obs. of 9 variables: #> ..$ p : num [1:7] 3330 3150 3000 2850 2700 2550 2400 #> ..$ Bo : num [1:7] 1.25 1.24 1.22 1.21 1.2 ... #> ..$ Rs : num [1:7] 510 477 450 425 401 375 352 #> ..$ Rv : num [1:7] 0 0 0 0 0 0 0 #> ..$ Bg : num [1:7] 0.00087 0.00092 0.00096 0.00101 0.00107 0.00113 0.0012 #> ..$ Bw : num [1:7] 1 1 1 1 1 ... #> ..$ muo: num [1:7] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 #> ..$ mug: num [1:7] 0.02 0.02 0.02 0.02 0.02 0.02 0.02 #> ..$ muw: num [1:7] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 #> $ inj :'data.frame': 7 obs. of 1 variable: #> ..$ Gi: num [1:7] 0 0 0 0 0 0 0 #> $ wf : num [1:7] 1 1 1 0 1 0 1 #> $ sorg : num 0.2 #> $ rel_perm :'data.frame': 101 obs. of 4 variables: #> ..$ Sg : num [1:101] 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ... #> ..$ Sl : num [1:101] 1 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 ... #> ..$ Krg : num [1:101] 0 0 0 0 0 ... #> ..$ Krog: num [1:101] 1 1 1 1 1 ... #> - attr(*, "class")= chr [1:2] "gas_cap_forecast_oil" "forecast_oil"